Pages

Thursday, 9 July 2020

Drones for Tower Inspections and Optimization


With the advancements in drone design, technology and automation, over the last couple of years I have noticed quite a few announcements about drones for tower inspections and optimisation. It would not be possible to cover all the companies here that have a solution but here are three big well known names in our industry that we are going to look in this post.


Back in March 2019, NTT Docomo announced that they have agreed to test docomo sky(TM) for Tower Inspection with PT Solusi Tunas Pratama Tbk. (STP), a company that leases out telecommunication towers in Indonesia. 

The service uses drones to photograph base stations and telecom towers and transmit the information to a command center in real time. The partners hope to expand the scope of the test to include other locations and facilities prior to launching a full-scale commercial service in the first half of this year.

The system being tested is based on an operational drone-based tower inspection system developed by DOCOMO for its commercial network throughout Japan, and supports the "docomo sky" ground control station (GCS) app for assistance in inspection tasks, enabling drone operators to input flight data with ease. For the test, DOCOMO will provide its cloud-based platform for operational support and data analysis. The drones fly automatically, take photos and transmit the images via the platform in real time, enabling technicians to inspect the towers via the docomo sky web browser immediately.

Indonesia is undergoing rapid urban development, including the construction of tall buildings and transportation infrastructure, which has resulted in large structures occasionally interfering with radio propagation from telecom towers. STP, which manages such facilities, must dispatch technicians to visually check conditions by climbing the towers. The new service will enable remote inspections to be conducted much more quickly and safely than at present, thereby allowing STP to achieve greater customer satisfaction with its service to mobile network operators.

In addition, the service is expected to support efforts to speed up procedures for inspecting and restoring telecom facilities in Indonesia whenever a natural disaster occurs.

Going forward, DOCOMO will continue to develop and upgrade its advanced drone services, one of the many ways the company is serving society by leveraging its diverse technical assets and know-how, including mobile network technology and platform businesses.

This week Docomo announced new features of drone platform "docomo sky" and new tariff. Details (in Japanese) available here.


Back in April this year, Rakuten Mobile announced that it will collaborate with Rakuten Group company Rakuten AirMap, Inc., which provides solutions supporting safe and compliant drone operations to enterprises, airspace authorities and drone operators in Japan, in using drones to conduct completion inspections of base stations for its mobile network.

As Rakuten Mobile expands its base station network across Japan, drones will take multi-angle photographs of the newly constructed base stations. In typical completion inspections, an engineer climbs the antenna tower on which the base station is installed and visually inspects the equipment. However, these inspections raise a number of concerns regarding safety, the time required to carry out the inspections and personnel costs. By carrying out the work with drones, completion inspections can be conducted in a shorter amount of time, more efficiently and with a higher degree of safety. Completion inspections will be conducted using AirMap’s TowerSight, a unified system that allows tower companies and MNOs to transform their tower inspections using automated drone workflows.

To date, Rakuten Mobile has conducted limited trials of base station completion inspections using drones in certain areas, and will now fully adopt drones for completion inspections nationwide. By using drones in completion inspections, Rakuten Mobile aims to improve the efficiency of base station construction and accelerate the expansion of its network area.

Drone captures of the base station and surrounding area are shared through Rakuten AirMap’s cloud-based inspection system, allowing staff working on the construction of the base stations to manage and share information efficiently and chronologically.

Rakuten AirMap has been instrumental in establishing the infrastructure for safe and scalable drone use in Japan and will leverage its expertise in completion inspections to contribute to the growth of drone applications in business. The two companies are also looking into the use of drone-based inspections during natural disasters and other emergency situations.

The official Rakuten Blog has a much more detailed article here.


The final announcement is from Samsung Electronics where they announced a successful demonstration of their new drone-based antenna configuration measurement solution for 4G and 5G networks in the company’s campus.

This automated solution will offer operators a simplified way to more efficiently manage cell sites, improve employee safety, and ultimately optimize network performance.

In the demonstration, an engineer on the ground used a smartphone with a remote control application to fly a camera-equipped drone that captured photos of the antennas installed on a building’s rooftop. The visual data was viewable via the engineer’s smartphone and then was transmitted to a cloud server within seconds. The deep learning-based artificial intelligence (AI) solution instantly verified the rotation and tilt of the antennas, so that the engineers could determine if the antennas were installed correctly at predefined optimal angles.

It took less than a minute to transmit the data and process the results, enabling the engineer to view results on-site in real-time on the smartphone screen. The demonstration verified that Samsung’s solution can accomplish the task within 15 minutes – starting from flying the drone to the delivery of measurement results. This compares to the several hours it can take for a tower climber to prepare, climb up and down a cell tower, and measure antenna configurations.

In conjunction with this new solution, Samsung will continue to add additional features, which will allow the engineers to remotely adjust the antenna tilts to its optimal position from a mobile device and PC.

Cellular antennas are typically installed at significant heights on sites such as cell towers or rooftops, in order to ensure optimal mobile coverage. Operator field engineers ordinarily carry heavy and expensive equipment as they climb up cell sites to measure the antenna configurations. With Samsung’s drone-based AI solution, operators will have a new approach for reinforcing the safety of their employees.



The solution’s safety benefits will be especially helpful during site audit and maintenance in the U.S., which often requires two field personnel to be dispatched to a site to audit or adjust the antenna angles -- and requires climbs that use more advanced safety training.

“As the number of 5G network sites grows, there has been a heightened focus on network performance by operators, and we are seeing an increased market demand for intelligent solutions for site maintenance,” said Sohyong Chong, Vice President and Head of Network Automation, Networks Business at Samsung Electronics. “Once this solution launches globally later this year, it will offer a safer, more cost-effective and convenient way to satisfy market demands, leveraging our unique capabilities in combining the latest technologies—drones, AI and 5G.”

Samsung Networks is a pioneer in the successful delivery of 5G end-to-end solutions ranging from chipset, radio and core network to cloud platform for both mid-band (2.5GHz/3.5GHz) and mmWave (28GHz/39GHz) frequencies. The company has been supporting 5G commercial services in leading markets, including Korea, U.S. and more recently Japan, where the majority of worldwide 5G subscribers are currently located.

No comments:

Post a Comment